翻訳と辞書 |
3-4-6-12 tiling : ウィキペディア英語版 | 3-4-6-12 tiling
In geometry of the Euclidean plane, the 3-4-6-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, hexagons and dodecagons, arranged in two vertex configuration: 3.4.6.4 and 4.6.12.〔Critchlow, p.62-67〕〔Grünbaum and Shephard 1986, pp. 65-67〕〔(In Search of Demiregular Tilings ) #4〕〔Chavey (1989)〕 It has hexagonal symmetry, p6m, (), ( *632). It is also called a demiregular tiling by some authors. == Geometry== Its two vertex configurations are shared with two 1-uniform tilings: It can be seen as a type of diminished rhombitrihexagonal tiling, with dodecagons replacing periodic sets of hexagons and surrounding squares and triangles. This is similar to the Johnson solid, a diminished rhombicosidodecahedron, which is a rhombicosidodecahedron with faces removed, leading to new decagonal faces. : 160px
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「3-4-6-12 tiling」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|